Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The dissolution of a polymeric solid typically starts with the absorption of solvent molecules, followed by swelling and volume expansion. Only when the extent of swelling reaches a threshold can the polymer chains be disentangled and then dissolved into the solvent. When the polymeric solid is encapsulated in a rigid shell, the swelling process will be impeded. Despite the widespread use of this process, it is rarely discussed in the literature how the polymeric solid is dissolved from the core for the generation of colloidal hollow particles. Recent studies have started to shed light on the mechanistic details involved in the formation of hollow particles through a template‐directed process. Depending on the nature of the material used for the template, the removal of the template may involve different mechanisms and pathways, leading to the formation of distinct products. Here, a number of examples are used to illustrate this important phenomenon that is largely neglected in the literature. This article also discusses how the swelling of a polymeric template encapsulated in a rigid shell can be leveraged to fabricate new types of functional colloidal particles.more » « less
- 
            Abstract Colloidal Janus particles with well‐controlled parameters are sought for a range of applications in mesoscale self‐assembly, stabilization of Pickering emulsion, and development of multifunctional devices, among others. Herein, a versatile method for fabricating polystyrene‐silica (PS‐SiO2) Janus particles featuring complex shapes and structures is developed by swelling PS@SiO2core–shell spheroids. When the PS encapsulated in a rigid SiO2shell is swollen by a good solvent for PS, the swelling‐induced pressure will result in an uneven distribution of stress acting on the SiO2shell, as determined by the intrinsic symmetry of a spheroid. When the stress reaches a threshold value, the swollen PS will preferentially poke out from equatorial sites on the SiO2shell to form T‐shaped Janus particles comprised of PS and SiO2compartments. The size of the PS portion can be controlled by varying the extent of swelling, while the size, shape, and shell thickness of the SiO2portion are determined by the original PS spheroids and the SiO2coating. This solution‐phase method holds promise to produce Janus particles with diverse shapes, structures, and compositions for various applications. The T‐shaped Janus particles can serve as an emulsifier to effectively stabilize an oil‐in‐water (O/W) Pickering emulsion for at least 35 days.more » « less
- 
            Abstract Bimetallic Janus nanocrystals have received considerable interest in recent years owing to their unique properties and niche applications. The side‐by‐side distribution of two distinct metals provides a flexible platform for tailoring the optical and catalytic properties of nanocrystals. First, a brief introduction to the structural features of bimetallic Janus nanocrystals, followed by an extensive discussion of the synthetic approaches, is given. The strategies and experimental controls for achieving the Janus structure, as well as the mechanistic understandings, are specifically discussed. Then, a number of intriguing properties and applications enabled by the Janus nanocrystals are highlighted. Finally, this article is concluded with future directions and outlooks with respect to both syntheses and applications of this new class of functional nanomaterials.more » « less
- 
            Abstract This paper describes a simple and robust method for the continuous production of water‐soluble nanocrystals using anti‐solvent precipitation under diffusion control in a fluidic device. We use sodium chloride (NaCl) as an example to demonstrate the concept. In a typical process, aqueous NaCl and ethanol (the anti‐solvent) serve as the focused and focusing phases, respectively, for the generation of a coaxial‐flow system. Upon contact with each other, the rapid diffusion between water and ethanol leads to the formation of NaCl nanocrystals at the interface while a gradient in NaCl concentration is created along the flow direction. The nucleation and growth of NaCl nanocrystals can be readily tuned by varying the hydrodynamic parameters such as the ratio between the flow rates of the two phases and the total volumetric rate. By optimizing these parameters, we are able to produce NaCl nanocubes and nanospheres as small as 20 nm and 6 nm, respectively, while attaining a narrow distribution in size. We have also successfully generated KCl nanocrystals with similar controls, demonstrating the generality of this method for the production of water‐soluble nanocrystals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
